Overview of Trichloroethylene (TCE) Occurrence and Regulatory Trends

John M. DeSesso, Ph.D., ATS Senior Fellow

Trichloroethylene

$$CI$$
 $C = C$
 CI
 CI

(Trichloroethene; TCE; TRI)

Historical Uses of Trichloroethylene

- Medical uses
 - Anesthetic agent
 - Analgesic for trigeminal neuralgia
 - Disinfectant
- Extraction solvent for foods
- Solvent in manufacture of cosmetics
- Dry cleaning solvent

Current Uses of Trichloroethylene

- Metal degreasing agent
- Manufacturing solvent
 - Pesticides
 - Varnishes, lacquers, paints
 - Dyes
- Component of
 - Adhesives
 - Spot removers
 - Rug cleaners
 - Disinfectants

Why should TCE be evaluated?

- Occupational exposures
- Environmental contaminant
 - Widespread
 - Persistent
 - Mobile

Conflicting Evaluations of Health Risks from TCE Exposure

- IARC: 2A Probable Human Carcinogen
- ACGIH: A5 Not Suspected to be a Human Carcinogen – under occupational scenarios
- NTP: Reasonably Anticipated to be a Human Carcinogen (Not Upgraded)
- EPA: Removed classification from IRIS 1986; reevaluation pending; draft assessment (2001) concludes TCE is "highly likely to produce cancer in humans"

Decision Tree Method for Potential Carcinogens

- Does TCE damage DNA?
 - Bacteria
 - Mammalian cells
- Is exposure to TCE associated with elevated human cancers?
 - Target organs
 - Dose-related incidences
 - Consistency
- Does TCE cause cancer in animals?
 - Threshold
 - Similar metabolism in humans?

Results of Genotoxicity Studies

- TCE and oxidative metabolites
 - Many in vitro and in vivo studies
 - Negative or weakly positive
- Reductive metabolites (via glutathione conjugation)
 - Positive
 - Not quantitatively important in humans

Epidemiology

- Study of the distribution and determinants of disease
- Identifies factors that
 - Differ between two populations
 - Are sufficiently important to play a determining role in the cause of a disease

Types of Epidemiology Studies

- Cluster analyses
 - Episodic observations of isolated disease cases, often related to exposure to an agent
- Case-Control Studies
 - Retrospective investigations of histories and habits of persons who developed a disease
- Cohort Studies
 - Longitudinal (prospective or retrospective)
 investigations of persons exposed to an agent

Criteria Used to Infer Causality

- Temporal relationship
- Strength of association
- Specificity of association
- Dose-response relationship
- Consistency
- Biological plausibility

Selected Case-Control Studies of TCE and Kidney Cancer

Cases	Controls	Exposure	Results & Comments	Reference
12 (Mass. transformer plant)	1202 (from same employer)	Work histories, job exposure matrix	Risk of kidney cancer ←→	Greenland et al. (1994)
438 (Minn.)	687 (population)	Work histories, job exposure matrix	Risk of renal cell carcinoma ←→ Gender difference?	Dosemeci et al. (1999)
935 (Germany)	4298 (population)	Job title/tasks, job exposure matrix	Risk of renal cell carcinoma No evidence of gender difference	Pesch et al. (2000)
58 (Germany)	84 (hospital)	Work histories, interviews	OR 10.8 (3.36-34.75) for renal cell carcinoma High, long-term exposures Methodological flaws	Vamvakas et al. (1998)

Criteria for Inclusion of Cohort Studies in Further Analysis

- Investigation of cancer outcomes
- Cohort size of >750
- Assessment of TCE exposure
- Follow-up period of > 25 years

Selected Cohort Studies of TCE

Cohort	Size	Years	Exposure	Results & Comments	Reference
Hill AFB, UT	7204	38	Job titles/ descriptions, interviews, historical records	Cancer incidence Cancer mortality Kidney cancer incidence Kidney cancer mortality	Blair et al. (1998)
Hughes Aircraft plant, AZ	4733	43	Job exposure matrix	Cancer mortality Kidney cancer mortality Healthy worker effect	Morgan et al. (1998)
Lockheed Martin aircraft plant, CA	2267	36	Job descriptions, interviews, historical records	Cancer mortality Kidney cancer mortality	Boice et al. (1999)

Selected Cohort Studies of TCE

Cohort	Size	Years	Exposure	Results & Comments	Reference
Swedish workers	1670	32	Urinary TCA	Cancer mortality •	Axelson et al. (1994)
Finnish workers	3089	26	Urinary TCA	Cancer mortality Cancer incidence Kidney cancer incidence	Anttila et al. (1995)
Danish workers	803	28	Air TCE, urinary TCA	Cancer incidence ← Kidney cancer incidence ←	Hansen et al. (2001)
German cardboard factory	169	37	Job histories, interviews	Kidney cancer incidence 5-10x Kidney cancer mortality High, long-term exposures Methodological flaws	Henschler et al. (1995)

Some Cautions Regarding the Henschler Study

- Small cohort size (N = 169) limits statistical robustness
- Study emanated from a cluster
 - Formed the basis for the hypothesis
 - Purists would have excluded the cluster from a longitudinal study
- Unexposed cohort exhibited 9-fold increase in brain cancer deaths
 - Attributed to "observer sensitivity bias"

Sagittal Section of the Kidney

Some Cautions Regarding the Henschler Study

- Critics call attention to the mis-grouping of the renal pelvis tumor with renal cell tumors
 - Different location
 - Different tissue of origin
 - Recognized by the authors and deliberately done
- There is a lack of a dose-response
 - Three renal cell tumors in the low-exposure group;
 latency periods of 18-19 yr
 - One renal cell tumor and one renal pelvis tumor in the high-exposure group; latency periods of 34 yr

Assessment of Selected Epidemiology Studies

- Most data do not support an association between TCE exposure and kidney cancer in humans
 - Among selected case-control studies of TCE
 - 3 negative
 - 1 positive
 - Cohort studies which met inclusion criteria
 - 6 negative
 - One small, flawed cohort study positive

Chronic Inhalation Studies of Animals Exposed to TCE

- TCE at 0, 100, 300, 600 ppm
 7 hr/d, 5 d/wk, for 78 wk
 to Swiss and B6C3F1 mice
 - Male Swiss: dose-related lung and liver tumors
 - Female B6C3F1: dose-related lung tumors
- TCE at 0, 100, 300, 600 ppm
 7 hr/d, 5 d/wk, for 104 wk
 to Sprague-Dawley rats
 - Males: dose-related kidney toxicity and tumors
- Negative results in hamsters

Chronic Oral Studies of Animals Exposed to TCE

- Early studies confounded by carcinogenic stabilizers
- TCE at 0 or 1000 mg/kg
 5 d/wk for 103 wk to B6C3F1 mice
 - Both sexes: increased liver tumors and kidney toxicity
- TCE at 0, 500, or 1000 mg/kg
 5 d/wk for 103 wk to 5 strains of rats
 - Inadequate for assessing carcinogenicity
 - Both sexes of all 5 strains: increased kidney toxicity
 - Males of 2 strains: increased kidney tumors

Metabolism of TCE

Likely Mechanism for Renal Tumor Development in Rats

Chronic Low Dose

Trichloroethylene
No Obvious
Changes in Tissues
(No Tumors)

Status of the Carcinogenicity Issue

- Qualitative and quantitative differences exist between rodent and human metabolism of TCE.
- Rodent tumors develop only at high doses of TCE.
- A threshold exists for TCE-induced rodent tumor development based on chronic tissue damage and subsequent regeneration.
- TCE has not been associated consistently with human cancer or increased mortality.
- At low, environmental concentrations, TCE is not likely to be a human carcinogen.

Bases for the EPA Position

- EPA relies heavily on the Henschler study because it alleges cancer outcome in humans
- Emerging concept of "opportunistic carcinogen" is being applied to TCE
- New molecular findings could be consistent with a possible cancer effect and speculations about non-cancer endpoints, suggesting the absence of a toxicity threshold
 - Unvalidated
 - Small numbers of subjects
 - Highly speculative
- Conservative (over-protective) position is easy to defend

Non-threshold Dose-Response Relationship

Threshold Dose-Response Relationship

Probable Consequences of EPA Assessment

- Maximum contaminant level (MCL) for drinking water will decrease
 - Likely range will be $0.3 1.0 \mu g/L (0.3 1.0 ppb)$
- Closed sites may be re-examined and, potentially, re-opened
- Soil vapor intrusion into crawl spaces, basements, and buildings will result in new clean-up challenges

Metabolism of TCE in Humans

A Perspective on Amounts

- Pediatric dose of chloral hydrate = 900 mg
- How much water is required to dilute this to the current MCL of TCE (5 μg/L)?
 - ~42,500 gallons
 - A swimming pool 40' long x 20' wide x 8' deep
- At 2 L/day, how long for a single person to drink it all?
 - Over 245 years
 - (At 1 μg/L, it would take over 1200 years)

Points to Remember

- MCLs are **not** clean-up standards
- Site-specific risk assessments will be important and should be conceptualized early
- It is incumbent on remedial investigation personnel to carefully determine future uses of land and aquifers
 - Future use should guide what clean-up method should be used and what the clean-up standard should be
- Well head treatment may prove to be the most efficient and cost effective strategy

